000 "ЭЛТЕХ"

ПРЕОБРАЗОВАТЕЛЬ ИЗМЕРИТЕЛЬНЫЙ КОНЦЕНТРАЦИИ МЕТАНА ИНФРАКРАСНЫЙ СТАЦИОНАРНЫЙ "ОПТИМ-02"

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЛНЦА.413311.002-16 РЭ

ПАСПОРТ ЛНЦА.413311.002-16 ПС

> Тверь 2016

Ведение.

Настоящее «Руководство по эксплуатации» (РЭ) предназначено для изучения устройства, конструкции и принципа действия преобразователя измерительного концентрации метана инфракрасного стационарного «ОПТИМ-02» (далее преобразователя). РЭ является объединённым эксплуатационным документом, включает в себя разделы паспорта «Технические характеристики», «Гарантии изготовителя», «Свидетельство о приёмке», содержит основные технические данные, рекомендации по техническому обслуживанию, а также другие сведения, необходимые для правильной эксплуатации, ремонта и хранения преобразователей.

Преобразователи внесены в Государственный реестр средств измерений Российской федерации, номер в госреестре 90923-24. Срок действия по 11.01.2029. Межповерочный интервал составляет 1 год, поверка осуществляется согласно методике поверки «МП-003-23».

Преобразователи соответствуют требованиям Технического регламента Таможенного союза ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах», сертификат соответствия № ЕАЭС RU C-RU.ВН02.В.00809/22 выдан органом по сертификации ФГУП «ВНИИФТРИ» (ОС ВСИ «ВНИИФТРИ») Срок действия по 18.07.2027.

Предприятие изготовитель: ООО «ЭЛТЕХ». Россия, 170000, г. Тверь, пл. Гагарина, д. 1. Тел. +7(4822)34-68-10, 34-68-17. E-mail: mail@eltech.tver.ru. Интернет сайт: www.eltech.tver.ru.

1. Назначение и область применения.

1.1. Преобразователи предназначены для непрерывного автоматического измерения концентрации взрывоопасного газа метана в окружающей атмосфере и передаче измеренного значения концентрации по цифровому интерфейсу «1-WIRE», а также выдачи сигнализации о превышении установленных пороговых значений.

Конструктивно преобразователь состоит из блока датчика, обеспечивающего измерение концентрации метана и подключение внешних интерфейсов, и блока питания, обеспечивающего электропитание блока датчика от литиевой батареи выходным искробезопасным напряжением 3.6±0.3В. Блок датчика может использоваться без блока автономного питания совместно с оборудованием обеспечивающем его электропитанием.

Условия эксплуатации:

- Температура окружающей среды --- от -40 до +45°C;
- Относительная влажность ----- от 20 до 98 % без конденсации влаги;
- Атмосферное давление -----от 86 до 108 кПа;
- Содержание механических и агрессивных примесей в контролируемой среде, не должно превышать уровня ПДК согласно ГОСТ 12.1.005-88.

Принцип измерения концентрации метана преобразователем – инфракрасная адсорбция.

Метод пробоотбора – диффузионный.

Рабочее положение преобразователя в пространстве – произвольное.

Преобразователь подлежит поверке, межповерочный интервал составляет 1 год.

1.2. Область применения - взрывоопасные зоны помещений и вблизи наружных технологических установок, в которых возможно

образование взрывоопасных смесей, согласно маркировке взрывозащиты:

- 1Ex db [ib] IIB T6 Gb X для блока автономного питания;
- 1Ex ib IIB T6 Gb X для блока датчика.
- 1.3. Степень защиты оболочки преобразователей от проникновения воды, пыли посторонних твёрдых частиц по ГОСТ 14254-2015 должна соответствовать коду:
 - ІР65 для блока автономного питания;
 - ІР30 для блока датчика.
- 1.4. Преобразователи по способу защиты человека от поражения электрическим током соответствуют классу III по ГОСТ IEC 60950-1-2011.
- 1.5. Конструктивное исполнение преобразователей обеспечивает их пожарную безопасность по ГОСТ 12.1.004-91 в аварийном режиме работы и при нарушении правил эксплуатации.

2. Технические характеристики.

2.1. Основные технические характеристики преобразователей приведены в таблице 1.

Таблица 1

Наименование параметра,	Значение	Примечание
единицы измерения		
Определяемый компонент	Метан	
Диапазон измерений,	0100	За 100% НКПР принято
%НКПР		4.4% об. (в соответствии с
		ГОСТ Р 52136-2003)
Предел основной	±(3.0 +0.02*C)	С – измеренное значение
погрешности измерения		концентрации в %НКПР
концентрации (ΔС) не более,		
%НКПР		
Вариация измеряемого	0.5	
значения в долях от		
пределов допускаемой		
основной абсолютной		
погрешности не более		
Предел дополнительной	±0.6*ΔC	при изменении
абсолютной погрешности		температуры
измерений концентрации не		окружающей среды в
более, % НКПР		диапазоне эксплуатации
		на каждые 10°С
	±1*ΔC	при изменении
		влажности в диапазоне от
		20 до 98% без
		конденсации влаги

Таблица 1 (продолжение)

Время прогрева	120	
преобразователя не более,		
секунд		
Предел времени	45	
установления значения		
концентрации (Т90) не		
более, секунд		
Потребляемая мощность не	10	
превышает, мВт		
Габаритные размеры	100x120x50	Блок датчика
преобразователя не более,	200x200x130	Блок автономного
MM		питания
Масса, не более, кг	1	

2.2 Параметры искробезопасных цепей:

Цепь питания(блок питания)	Цепь питания (блок датчика)	Цепь 1- wire(блок датчика)	Цепь сухих контактов(блок датчика)
Uo ≤ 6 B	Ui ≤ 6 B	Ui ≤ 6 B	Ui ≤ 28 B
Io ≤ 600 MA	Ii ≤ 600 MA	Ii ≤ 600 mA	Ii ≤ 290 mA
Ро ≤ 0.9 Вт	Pi ≤ 3.6 Bτ	Pi ≤ 3.6 BT	Pi ≤ 8.12 B⊤
Со ≤ 620 мкФ	Сі ≤ 500 мкФ	Сі ≤ 500 мкФ	Сі ≤ 10 пФ
Lo ≤ 3.9 мкГн	Li ≤ 1 нГ	Li ≤ 1 нГ	Li ≤ 1 нГ

- 2.3. Блок автономного питания обеспечивает работу преобразователя до замены элементов питания* в течении 2х лет**.
- 2.4. Средняя наработка на отказ преобразователей, не менее 10 лет. Критерий отказа неустранимый выход основной погрешности за допустимые пределы, невыполнение функционального назначения.

2.5. Полный средний срок службы преобразователя – 10 лет.

- 1) «XL-205F», производитель «Xeno Energy» Республика Корея;
- 2) «Tekcell SB-D02/TC», производитель «Vitzrocell» Республика Корея.
- **Указанное время приведено на основании расчётных данных и практического опыта эксплуатации преобразователей в климатических условиях средней полосы европейской части России.

3. Комплектность.

3.1. Типовой комплект поставки преобразователя приведён в табл. 2.

Таблица 2

Наименование	Обозначение	Кол-во, шт.
Преобразователь «ОПТИМ-02»	ЛНЦА.413311.002-16	1
Упаковка	Б/О	1
Паспорт	ЛНЦА.413311.002-16 ПС	1
Руководство по эксплуатации	ЛНЦА.413311.002-16 РЭ	1
Методика поверки	МП-003-23	1 на партию

3.2. В комплект поставки преобразователя могут дополнительно входить кабели для внешних устройств, устройства для поверки и другая эксплуатационная документация и приспособления, предусмотренные договором с Заказчиком.

^{*}Рекомендуется использовать следующие элементы питания:

4. Устройство и работа.

4.1. Принцип действия.

Принцип действия преобразователя основан на избирательном поглощении инфракрасного излучения молекулами исследуемого газа в области длин волн 3,31 мкм.

Инфракрасное излучение светодиода проходит через измерительную газовую кювету диффузионного типа и попадает на 2 фотоприемника, один из которых регистрирует только излучение в диапазоне длин волн 3,31 мкм, другой в диапазоне длин волн 3.5-3.7 мкм. Исследуемый газ, находящийся в кювете поглощает излучение рабочей длины волны ($\lambda p = 3,31$ мкм) и не влияет на излучение опорной длины волны ($\lambda o = 3,65$ мкм). Амплитуда Ір рабочего сигнала фотоприемника изменяется при изменении концентрации в соответствии с выражением:

$$Ip/Io = exp \{ - [K(\lambda p) - K(\lambda o)]CL \};$$

где:

 $K(\lambda)$ - коэффициент поглощения на заданной длине волны;

L - оптическая длина кюветы;

С - измеряемая концентрация газа;

Ip, Io - амплитуда сигналов на фотоприемнике.

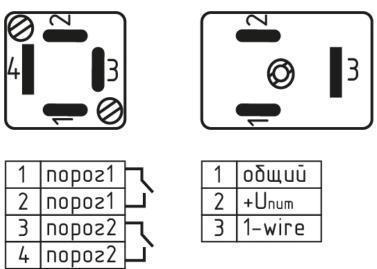
Искомая концентрация газа находится по формуле:

$$C = -Ln (Ip/Io) / (L [K (\lambda p) - K (\lambda o)]);$$

Используемый дифференциальный двухволновой метод регистрации позволяет устранить влияние паров воды, загрязнения оптических элементов и прочих неселективных помех, одинаково влияющих на оба канала.

4.2. Устройство и конструкция.

Общий вид преобразователя приведён на рисунке 1. *Рисунок 1*



Конструктивно преобразователь состоит из блока датчика, обеспечивающего измерение концентрации метана и подключение внешних интерфейсов, и блока автономного питания, обеспечивающего электропитание преобразователя от литиевой батареи с выходным напряжением 3.6±0.3В.

Блок автономного питания представляет собой сертифицированную взрывозащищённую оболочку в которой имеется держатель литиевого (используется LiSOCI2 элемент) элемента питания. На боковой поверхности оболочки имеется гермоввод, из которого выходит искробезопасная электрическая линия для питания блока датчика (в своем составе блок содержит диоднорезистивный барьер искробезопсности, построенный на дискретных элементах).

Блок датчика выполнен в виде прямоугольного корпуса с крышкой и отверстиями для винтового крепления на плоской поверхности. На боковых поверхностях корпуса расположены разъёмы для подключения внешних цепей. Цоколёвка разъёмов приведена на рисунке 2.

Рисунок 2.

Блок датчика состоит из следующих функциональных модулей:

- Сенсор инфракрасный оптический МИП-ВГ-02-1;
- Модуль контроллера интерфейсов 1-WIRE и 2х пороговых выходов типа сухой контакт.

Сенсор инфракрасный оптический МИП-ВГО-2-1 включает в себя инфракрасный светодиод, приемники опорного и измерительного каналов, усилители сигналов, стабилизатор питания и микроконтроллер. Сенсор имеет искробезопасное исполнение с маркировкой Ex ia I U / Ex ia IIC U и подключается к преобразователю по искробезопасным цепям.

Модуль интерфейсов включает в себя управляющий микроконтроллер, элементы формирования выходных сигналов, элементы обеспечения искробезопасности.

По умолчанию для выходов «сухих» контактов установлены следующие параметры.

- Состояние контактов нормально разомкнутые;
- Порог 1 − 10% НКПР;
- Порог 2 − 20% HKПР.

Нормальное состояние контактов и пороги срабатывания могут быть изменены по согласованию с заказчиком.

5. Обеспечение взрывозащищенности.

- 5.1. Взрывозащищённость блока датчика преобразователя обеспечивается видом взрывозащиты «искробезопасная электрическая цепь уровня «ib» с маркировкой «**1Ex ib IIB T6 Gb X**» по ГОСТ 31610.0-2019, ГОСТ 31610.11-2014. Взрывозащищённость блока датчика преобразователя достигнута за счёт:
 - Использования сертифицированного сенсора «МИП ВГ-02-1» производимого ООО «Оптосенс» с видом взрывозащиты, соответствующем маркировке «ExiaIU/ExiaIICU»;
 - Соответствия конструкции требованиям ГОСТ 31610.0-2019, ГОСТ 31610.11-2014;
 - Ограничением параметров внешних электрических цепей до искробезопасных значений согласно ГОСТ 31610.11-2019.
- 5.2 Взрывозащищённость блока питания преобразователя обеспечивается комбинированным видом взрывозащиты «искробезопасная электрическая цепь уровня «ib» и «взрывонепроницаемая оболочка» с маркировкой «1Ex d[ib]IIB T6 Gb X» по ГОСТ 31610.0-2019, ГОСТ Р ГОСТ IEC 60079-1-2013, ГОСТ

31610.11-2019. Взрывозащищённость блока автономного питания достигнута за счёт:

- Соответствия конструкции требованиям ГОСТ 31610.0-2019,
 ГОСТ IEC 60079-1-2013, ГОСТ 31610.11-2014;
 - Ограничения параметров внешней выходной цепи питания до искробезопасных значений согласно ГОСТ 31610.11-2014;
 - Размещения неискробезопасных цепей и элементов в сертифицированной взрывозащищённой оболочке с маркировкой 1Ex d IIB T6 по ГОСТ 31610.0-2019.

6. Маркировка и пломбирование

- 6.1. Маркировка взрывозащиты преобразователя должна соответствовать требованиям ГОСТ 31610.0-2019, ГОСТ IEC 60079-1-2013, ГОСТ 31610.11-2014.
 - 6.2. Маркировка преобразователя должна содержать:
 - Наименование и знак предприятия изготовителя;
 - Наименование и обозначение преобразователя;
 - Наименование измеряемого газа;
 - Месяц и год изготовления;
 - Номер преобразователя по системе нумерации предприятия изготовителя;
 - Обозначение технических условий;
 - Диапазон измерений;
 - Основную погрешность измерений;
 - Диапазон рабочих температур
 - Знак соответствия техническому регламенту таможенного союза;
 - Знак утверждения типа по ПР 50.2.009;
 - Обозначение взрывозащиты;

- Код IP;
- Диапазон рабочих температур;
- Параметры напряжения питания;
- Название органа сертификации и номер сертификата;
- Надпись на блоке автономного питания: «Во взрывоопасных зонах вскрывать запрещается!».
- 6.3. Пломбированию подлежит винт крепления крышки блока датчика преобразователя.

7. Упаковка

- 7.1. Преобразователь и эксплуатационная документация помещаются в полиэтиленовый пакет и укладываются в коробку из картона.
 - 7.2. Срок защиты без переконсервации 1 год.

8. Указание мер безопасности

- 8.1. К работе с преобразователем допускаются лица, прошедшие инструктаж по технике безопасности в установленном порядке и изучившие настоящее РЭ.
- 8.2. Обслуживающему персоналу рекомендуется пройти подготовку на предприятии-изготовителе.
- 8.3. Ремонт преобразователя должен проводиться только персоналом предприятия-изготовителя или лицами, уполномоченными предприятием-изготовителем для проведения ремонтных работ.

- 8.4. Перед включением преобразователя проверяйте отсутствие внешних повреждений преобразователя, сохранность пломб, наличие всех элементов крепления.
- 8.5. Запрещается эксплуатировать преобразователь, имеющий механические повреждения корпуса или нарушения пломбировки
- 8.6. Не допускается сбрасывание ПГС в атмосферу рабочих помещений при регулировке и поверке преобразователя.

9. Особые условия применения

- 9.1. Особые условия применения включают в себя следующие требования:
 - эксплуатацию и монтаж преобразователей должны осуществлять лица, знающие правила эксплуатации электроустановок во взрывоопасных зонах, изучившие руководство по эксплуатации, аттестованные и допущенные приказом администрации к работе с этими изделиями;
 - прокладка кабелей во взрывоопасной зоне в соответствии с ПУЭ;
 - при эксплуатации следует оберегать преобразователь от ударов и падений;
 - запрещается пользоваться преобразователями с поврежденными корпусом и пломбой.

10. Использование по назначению

10.1 Общие требования

10.1.1. К работе с преобразователем допускаются лица, изучившие настоящее РЭ, прошедшими инструктаж по технике безопасности при работе с электроустановками во взрывоопасных зонах в установленном порядке и обучение на предприятииизготовителе.

10.2 Подготовка к работе

- 10.2.1. Если преобразователь находился в транспортной упаковке при отрицательной температуре, выдержите его при температуре (10–35)°С не менее часа.
- 10.2.2. Снимите упаковку. Проверьте комплектность, наличие пломб, маркировки взрывозащиты, убедитесь в отсутствии механических повреждений.

10.3. Обеспечение взрывозащищенности при монтаже

- 10.3.1. Монтаж преобразователя на объекте должен производиться в соответствии с утвержденным в установленном порядке проектом размещения системы контроля, в составе которой используется преобразователь.
 - 10.3.2. При монтаже необходимо руководствоваться:
 - главой 7.3. «Правил устройства электроустановок» (ПУЭ)
 - главой 3.4. «Правил эксплуатации электроустановок потребителей» (ПЭЭП)
 - «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).
- 10.3.3. Монтаж преобразователя должен осуществляться в соответствии с документацией предприятия-изготовителя.

10.4. Порядок работы

- 10.4.1. Обеспечение взрывозащищенности при эксплуатации.
- 10.4.1.1. При эксплуатации необходимо руководствоваться:
 - главой 3.4. «Правил эксплуатации электроустановок потребителей» (ПЭЭП)
 - «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).
- 10.4.2. Первичная проверка работоспособности преобразователя
- 10.4.2.1. Подключите цепи интерфейсов в соответствии с рис.2.
- 10.4.2.2. После подачи питания на преобразователь в течение времени прогрева сенсора (120 с) состояние входных интерфейсов соответствуют показаниям 0%НКПР. После чего преобразователь автоматически контролирует содержание взрывоопасного газа (метана или пропана) в воздухе рабочей зоны и значение сигналов на его выходе соответствует концентрации.

10.5. Техническое обслуживание

- 10.5.1. Техническое обслуживание (ТО) производится с целью обеспечения нормальной работы преобразователя в течение его срока эксплуатации. ТО должно проводиться подготовленными лицами, изучившими настоящее РЭ, прошедшими инструктаж по технике безопасности при работе с электроустановками во взрывоопасных зонах в установленном порядке и обучение на предприятии-изготовителе.
- 10.5.2. Рекомендуемые виды и сроки проведения технического обслуживания:
 - внешний осмотр преобразователя раз в полгода;

- периодическая проверка работоспособности* раз в полгода;
- очистка корпуса и отверстий для забора газа раз в полгода.
- *- При ухудшении точностных характеристик рекомендуется произвести сброс нуля и калибровка чувствительности преобразователя.
- 10.5.3. Поверка преобразователя производится 1 раз в 2 года в соответствии с методикой поверки МП 2017-X.

11. Транспортирование и хранение

- 11.1. Условия транспортирования по условиям хранения 5(ОЖ4) по ГОСТ 15150-69.
- 11.2. Транспортирование преобразователей должно производиться всеми видами транспорта в закрытых транспортных средствах, а также в отапливаемых герметизированных отсеках самолетов в соответствии с правилами перевозки грузов, действующими на соответствующем виде транспорта.
- 11.3. Преобразователи в упаковке предприятия—изготовителя должны храниться на складах поставщика и потребителя в условиях хранения 1 по ГОСТ 15150-69.
- 11.4. В атмосфере помещения для хранения не должно содержаться вредных примесей, вызывающих коррозию.
- 11.5. Преобразователи в упаковке предприятия изготовителя следует хранить на стеллажах. Расстояние между отопительными устройствами хранилищ и преобразователями должно быть не менее 0,5 м.

Паспорт

12. Свидетельство о приёмке

	Преобразователь ОПТИМ-02 №		
экс	соответствует техническим условиям и признан годным для плуатации.		
	Дата продажи		
	Штамп торгующей организации и подпись продавца		

13. Сведения о вводе в эксплуатацию

lpeoбразователь ОПТИМ-02 заводской номер		
введен в эксплуатацию:		
	едприятия, производившего ввод в уатацию)	
Дата ввода в эксплуатацию	« »20 г.	
Ввод в эксплуатацию произвел	л:	
(должность, фамил	 ия, имя, отчество, подпись)	

14. Сведения о хранении

Сведения о хранении приведены в таблице 2.

Таблица 2.

Тиолици 2.			
	та	Условия Должность, фамилия и под	
установки	снятия	хранения	лица, ответственного за
на хранение	с хранения	Aparicin's	хранение

15. Сведения о поверке

- 14.1 Поверка ОПТИМ-02 проводится в соответствии с методикой поверки МП-003-23.
 - 13.2 Межповерочный интервал 1 год.
 - 13.3 Сведения о поверке приведены в таблице 3.

Таблица 3.

Таблица 3.			
Дата	Отметка о поверке	Подпись поверителя	Примечание

16. Рекламации

Гарантийный срок эксплуатации – 3 года со дня продажи.

В случае выявления неисправности в период действия гарантийных обязательств, а также обнаружения некомплектности (при распаковке) ОПТИМ-02 потребитель должен выслать в адрес предприятия—изготовителя письменное извещение со следующими данными:

- обозначение ОПТИМ-02, заводской номер, дату выпуска и дату ввода в эксплуатацию;
 - характер неисправности (или некомплектности).